

Contents

Preface		
Part – I		
Lasers		
1.	Introduction to Lasers	1 - 18
	Introduction	3
	Characteristics of Laser Radiation	3
	Coherence	4
	Spatial coherence	5
	Temporal Coherence	8
	Measurement of temporal coherence	11
	Importance of Coherence in Applications	12
	Monochromaticity	12
	Directionality	13
Beam Diameter	15	
High Intensity of Laser Light	16	
2	Einstein's Quantum Theory of Radiation	19 - 32
	Introduction	21
	The Einstein Coefficients	21
	Spontaneous lifetime	23
	Line Shape Function	24
	Possibility of Light Amplification	26
	The Threshold Condition	28
	Expression for Threshold Population Inversion	29
3	Basic Principles of Lasers	33 - 40
	Introduction	35
	Stimulated Absorption	35
	Spontaneous Emission	36
	Stimulated Emission	37
	Non-Radiative Decay	38
	Population Inversion	38
4	Basic Components of Laser	41 - 48
	Introduction	43
	Methods of Producing a Population Inversion	43
	Optical pumping or photon excitation	43
	Electron excitation	44
	Inelastic atom-atom collisions	45
	Active Medium or Working Substance	46
	Optical Resonator or Resonant Cavity	46

5	Laser Rate Equations	49 – 64
	Introduction	51
	The two-level system	52
	The three-level laser system	55
	The four-level laser system	60
6	Line Broadening Mechanisms	65 - 76
	Introduction	67
	Line broadening mechanisms	67
	Natural or Life timeline broadening	69
	Collision or Pressure Line Broadening	72
	The Doppler Broadening	74
7	Modes in Different Resonator Systems	77 - 98
	Introduction	79
	Modes of a Rectangular Cavity	79
	Modes of Open Planar Resonator	83
	Modes of a Confocal Resonator System	85
	General Spherical Resonator	92
	Higher Order Modes	95
8	Types of Lasers	99 - 126
	Introduction	101
	Types of Lasers	102
	Ruby Laser	102
	Application of Ruby Laser	105
	He-Ne Laser	105
	Application of He-Ne Laser	106
	Carbon-Dioxide (CO₂) Laser	106
	Semiconductor Laser	108
	Advantages of Solid-State Laser	110
	Disadvantages of Solid-State Laser	111
	Application of Solid-State Laser	111
	Liquid Lasers	111
	Advantages of Liquid-State Lasers	112
	Disadvantages of Liquid-State Lasers	113
	Application of Liquid-State Lasers	113
	Dye Lasers	113
	Advantages of Dye Lasers	114
	Applications of Dye Lasers	114
	Nd:YAG Laser	115
Applications of Nd:YAG Laser	117	
Neodymium: Glass Laser	118	
Excimer Lasers (Molecular Laser)	119	
Applications of Excimer Lasers	121	

	Metal Vapour Lasers	122
	Working of Metal Vapour Lasers	123
	Advantages of Metal Vapour Lasers	123
	Disadvantages of Metal Vapour Lasers	123
	Applications of Metal Vapour Lasers	123
	Fibre Lasers	123
	Working of Fibre Laser	124
	Advantages of Fibre Lasers	124
	Disadvantages of Fibre Lasers	124
	Application of Fibre Lasers	124
	Free Electron Laser	124
9	Application of Lasers	127 - 150
	Introduction	129
	Laser in Scientific Research	129
	Lasers in the Mechanical Industry: Drilling, Cutting, Welding, and Surface Treatment	131
	Laser in Electronic Industry: Scribing, Soldering, and Trimming	132
	Laser in Nuclear Energy (Isotope Separation, Nuclear Fusion, Nuclear Fission)	134
	Laser in Medicine and Surgery: (Eye Surgery, Radial Keratotomy, Skin Conditioning, Dentistry, and Angioplasty)	135
	Laser in LIDAR (Light Detection And Ranging)	137
	Laser in Defence: Laser in Defence	139
	Laser in Holography	140
	Laser in Supermarket Scanners (The Bar Code Reader)	142
	Laser in Compact Disc (CD)	144
	Laser in Optical Data Storage	146
	Laser in Optical Communication	147
Part – II		
Fiber Optics		
10	Introduction to Optical Fiber	153 - 162
	Introduction	155
	Basic Structure	155
	Advantages of Optical Fibers	156
	Fiber as a Guiding Medium	158
	Total Internal Reflection	159
11	Types of Fibers	163 - 178
	Introduction	165

	Single-Mode Fiber (SMF)	165
	Multimode Fiber (MMF)	166
	Single Mode vs Multimode Fiber Cable	167
	Refractive Index Profile	170
	Refractive index distribution	170
	Graded Index Fiber	172
	The Profile Parameter	173
	Acceptance Angle	174
	Numerical Aperture	175
	Derivation of Angle of Acceptance and Numerical Aperture	175
12	Modes in Optical Fiber	179 - 196
	Concept of Modes in Optical Fiber	181
	Electromagnetic analysis of guided modes in symmetric step-index planar optical fiber waveguide	182
	Types of Modes	184
	Waveguide Structure	185
	Modal Analysis of a step-index optical fiber	187
13	Concept of Normalized Frequency	197 - 204
	V - Number	199
	Interpretation of V-Value	203
	Number of Modes in Optical Fibers	203
14	Dispersion in Optical Fibers	205 - 230
	Pulse Dispersion in Step Index Fibers	207
	Intersymbol Interference	211
	Intramodal Dispersion Loss (single mode dispersion loss)	213
	Material Dispersion Loss	214
	Waveguide Dispersion	218
	Concept of Dispersion-Shifted Fibers	223
	Dispersion-Flattened Fibers	227
	Dispersion Compensation Fiber	227
	Polarization Maintaining Fiber	228
15	Attenuation in Optical Fibers	231 - 240
	Introduction	233
	Attenuation Units	233
	The dBm	234
	Absorption	234
	Scattering Losses	235
	Bending Losses	235
	Chromatic Dispersion	237
	Polarization-Dependent Loss (PDL)	237

	Connector and Splice Loss	237
	Misalignment Losses in Optical Fibers	238
	Lateral Misalignment	238
	Angular Misalignment	238
	Longitudinal Misalignment	239
	End Gap Misalignment	239
	Fiber Core and Cladding diameter Size Mismatch	239
	Connector and Splice Quality	240
	Minimizing Misalignment Losses	240
16	Optical Fiber Materials	241 - 254
	Introduction	243
	Glass Fibers	243
	Plastic optical Fibers	245
	Halide Glass Fibers	246
	Chalcogenide fibers	247
	Germanate Glasses	248
	Polycrystalline Fibers	248
	Sapphire Fibers	248
	Active Glass Fibers	249
	Plastic-Clad Glass Fibers (PCS)	249
	Photonic crystal fibers (PCFs)	250
	Multimaterial fibers	251
	Silicon Photonics	253
17	Optical Fiber Fabrication Method	255 - 262
	Introduction	257
	Preform Production	257
	Preform Heating and Drawing	257
	Fiber Drawing Apparatus	258
	Outside Vapor-Phase Oxidation	259
	Vapor-Phase Axial Deposition	259
	Modified Chemical Vapor Deposition:	260
	Plasma-Activated Chemical Vapor Deposition	261
	Double-Crucible Method	261
18	Fibre Splices, Connectors, and Couplers	263 - 278
	Fiber End Face Preparation	265
	Splices Used in Optical Fiber	266
	Splicing Techniques	267
	Fusion Splicing	267
	Mechanical Splice	267
	Elastic-tube Splicing	268
	V-Groove Splicing	269
	Rotary Splice	269

	Splice-On Connectors (SOCs)	270
	Properties of Optical Fiber Connectors	270
	Connector Types	271
	Butt-Joint Connectors	271
	Expanded Beam Connectors	272
	Connectors used in Optical Fibers	272
	Part – III	
	Nonlinear Optics	
19	Introduction Non-linear Optics	281 - 292
	Introduction	283
	Dimensions of Susceptibilities	285
	Important nonlinear optical effects	286
	Inversion center	287
	Centrosymmetric	287
	Symmetry Operations of Crystal	287
	An essential criterion to observe nonlinear optical effects	288
	First experimental demonstration of non-linear phenomena	290
20	Second Harmonic Generation	293 - 310
	Common Materials used in Second Harmonic Generation	295
	Introduction to Second Harmonic Generation	295
	Classical origin of optical nonlinearity	298
	Phase Matching Condition	306
	Coherence Length	307
21	Third Harmonic Generation	311 - 318
	Introduction to Third Harmonic Generation	313
	Self-focussing and Defocussing	313
22	Optical Mixing	319 - 324
	Introduction to Optical Mixing	321
	Optical Parametric Interactions	322
	Generation of Sum and Difference Frequencies	323

Preface

In the realm of modern science and technology, the study of lasers, fiber optics, and nonlinear optics stands as a testament to the remarkable fusion of theoretical brilliance and practical application. These fields have not only revolutionized the way we communicate and conduct experiments but have also opened up new vistas in the understanding of fundamental principles of light and its interactions with matter.

This book, "Lasers, Fiber Optics and Nonlinear Optics," has been meticulously crafted to cater to the diverse needs of students pursuing undergraduate, postgraduate, and competitive examinations. Our aim is to provide a comprehensive resource that enables learners to grasp the intricate concepts of optics, from the fundamental principles to cutting-edge applications.

Co-authored by Dr. R K Shukla, a distinguished scholar with over three decades of experience in teaching and research, and Dr. Anchal Srivastava, a passionate educator in the field of optics, this book reflects the blend of extensive knowledge and innovative pedagogy. Dr. Shukla's vast experience has been instrumental in shaping the content of this book, ensuring that it addresses the core concepts with clarity and precision. Dr. Srivastava's fresh perspective, informed by her hands-on experience with students, has contributed to making the text more accessible and engaging.

We recognize that the study of lasers, fiber optics, and nonlinear optics can be challenging, and that is precisely why this book is structured to progressively build the reader's understanding from the ground up. It starts with the fundamental principles of optics, gradually introducing advanced concepts and their practical applications.

The text is replete with illustrative diagrams and solved examples that not only help students grasp the material but also inspire them to delve deeper into the subject. It encompasses a wide range of topics, from the working principles of lasers and optical fibers to the fascinating world of nonlinear optics and its burgeoning applications.

Additionally, we have integrated the latest advancements in the field, keeping the content contemporary and relevant. With this knowledge, students will be

well-equipped to tackle the challenges posed by competitive exams and explore further research opportunities in this exciting and ever-evolving domain.

We sincerely hope that this book proves to be a valuable resource for students and educators alike. It is our belief that through understanding and mastering the principles of lasers, fiber optics, and nonlinear optics, the next generation of scientists and engineers will be empowered to shape the future of technology and innovation.

We express our gratitude to all the individuals who have contributed to the creation of this book, and we look forward to the fascinating journey of discovery that lies ahead for our readers.

Dr. R K Shukla

Dr. Anchal Srivastava